刘平教授团队为解决小麦籽粒检测精度低的问题,该研究建立ImCascade R-CNN模型,提出小麦籽粒表形鉴定方法,精准检测小麦籽粒完整性、分割籽粒并获取完整籽粒表形参数。ImCascade R-CNN模型检测小麦籽粒完整性的平均精度为90.2%,与Cascade Mask R-CNN、Deeplabv3+模型相比,能更好地识别、定位、分割小麦籽粒,为籽粒表形参数的获取提供基础。该方法测量粒长、粒宽的平均误差率分别为2.15%和3.74%,测量长宽比的标准误差为0.15,与人工测量值具有较高的一致性。该研究结果可快速精准检测籽粒完整性、获取完整籽粒表形数据,加速培育优质高产小麦品种。