2025年8月冯国富、王文娟等作者在《农业机械学报》发表题目为“基于改进Deeplabv3+的大口黑鲈表型数据测量与品质预测方法”的论文。大口黑鲈的肥满度、体质量及尺寸等是评估其品质的重要指标,针对上述数据手工测量操作繁琐、效率低下及关键点表型数据测量方法面积要素缺失等问题,该论文提出一种语义分割模型结合最小外接轴对齐矩形的表型数据测量方法,并基于表型数据测量与计算结果完成大口黑鲈品质预测。首先通过使用CBAM(Convolutional block attention module)和SENet (Squeeze-and-excitation network)对Deeplabv3+模型进行改进,实现对大口黑鲈头部、躯干、尾部、鱼鳍等部位的高精度分割,然后使用最小外接轴对齐矩形完成大口黑鲈各部位长、高测量,通过各部位像素与矩形像素的比例完成面积测量;最后,基于测量结果完成体质量回归预测与肥满度计算,以实现大口黑鲈品质预测。结果表明,语义分割模型整体mIoU (Mean intersection over union)达到90.15%,在忽略鱼鳍影响后,mIoU达到94.02%,测量所得全长、体长、体高平均相对误差低于2.5%,头长、头高平均相对误差低于3.5%,面积测量误差低于4.5%。多项式体质量回归预测模型对体质量预测值与实际值的决定系数为0.97,平均相对误差低于4%,基于测量值的3种肥满度状态指数计算结果均接近实际值。该方法可以高效、准确地获取大口黑鲈的表型数据,并为进一步衡量鱼类生长状况与健康状况研究提供参考。